pip is a tool for installing and managing Python packages, such as those found in the Python Package Index.

pip is a replacement for easy_install. It mostly uses the same techniques for finding packages, so packages that are easy_installable should be pip-installable as well. This means that you can use pip install SomePackage instead of easy_install SomePackage.

In order to use pip, you must first install setuptools or distribute. If you use virtualenv, a copy of pip will be automatically be installed in each virtual environment you create.


Once you have pip, you can use it like this:

$ pip install SomePackage

SomePackage is some package you’ll find on PyPI. This installs the package and all its dependencies.

pip does other stuff too, with packages, but install is the biggest one. You can pip uninstall too.

You can also install from a URL (that points to a tar or zip file), install from some version control system (use URLs like hg+http://domain/repo – or prefix git+, svn+ etc). pip knows a bunch of stuff about revisions and stuff, so if you need to do things like install a very specific revision from a repository pip can do that too.

If you’ve ever used python setup.py develop, you can do something like that with pip install -e ./ – this works with packages that use distutils too (usually this only works with Setuptools projects).

You can use pip install --upgrade SomePackage to upgrade to a newer version, or pip install SomePackage==1.0.4 to install a very specific version.

Pip Compared To easy_install

pip is meant to improve on easy_install. Some of the improvements:

  • All packages are downloaded before installation. Partially-completed installation doesn’t occur as a result.
  • Care is taken to present useful output on the console.
  • The reasons for actions are kept track of. For instance, if a package is being installed, pip keeps track of why that package was required.
  • Error messages should be useful.
  • The code is relatively concise and cohesive, making it easier to use programmatically.
  • Packages don’t have to be installed as egg archives, they can be installed flat (while keeping the egg metadata).
  • Native support for other version control systems (Git, Mercurial and Bazaar)
  • Uninstallation of packages.
  • Simple to define fixed sets of requirements and reliably reproduce a set of packages.

pip doesn’t do everything that easy_install does. Specifically:

  • It cannot install from eggs. It only installs from source. (In the future it would be good if it could install binaries from Windows .exe or .msi – binary install on other platforms is not a priority.)
  • It doesn’t understand Setuptools extras (like package[test]). This should be added eventually.
  • It is incompatible with some packages that extensively customize distutils or setuptools in their setup.py files.

pip is complementary with virtualenv, and it is encouraged that you use virtualenv to isolate your installation.


The homepage for pip is at pip-installer.org. Bugs can be filed in the pip issue tracker. Discussion happens on the virtualenv email group.


pip is able to uninstall most installed packages with pip uninstall package-name.

Known exceptions include pure-distutils packages installed with python setup.py install (such packages leave behind no metadata allowing determination of what files were installed), and script wrappers installed by develop-installs (python setup.py develop).

pip also performs an automatic uninstall of an old version of a package before upgrading to a newer version, so outdated files (and egg-info data) from conflicting versions aren’t left hanging around to cause trouble. The old version of the package is automatically restored if the new version fails to download or install.

Requirements Files

When installing software, and Python packages in particular, it’s common that you get a lot of libraries installed. You just did easy_install MyPackage and you get a dozen packages. Each of these packages has its own version.

Maybe you ran that installation and it works. Great! Will it keep working? Did you have to provide special options to get it to find everything? Did you have to install a bunch of other optional pieces? Most of all, will you be able to do it again? Requirements files give you a way to create an environment: a set of packages that work together.

If you’ve ever tried to setup an application on a new system, or with slightly updated pieces, and had it fail, pip requirements are for you. If you haven’t had this problem then you will eventually, so pip requirements are for you too – requirements make explicit, repeatable installation of packages.

So what are requirements files? They are very simple: lists of packages to install. Instead of running something like pip MyApp and getting whatever libraries come along, you can create a requirements file something like:


Then, regardless of what MyApp lists in setup.py, you’ll get a specific version of Framework (0.9.4) and at least the 0.2 version of Library. (You might think you could list these specific versions in MyApp’s setup.py – but if you do that you’ll have to edit MyApp if you want to try a new version of Framework, or release a new version of MyApp if you determine that Library 0.3 doesn’t work with your application.) You can also add optional libraries and support tools that MyApp doesn’t strictly require, giving people a set of recommended libraries.

You can also include “editable” packages – packages that are checked out from Subversion, Git, Mercurial and Bazaar. These are just like using the -e option to pip. They look like:

-e svn+http://myrepo/svn/MyApp#egg=MyApp

You have to start the URL with svn+ (git+, hg+ or bzr+), and you have to include #egg=Package so pip knows what to expect at that URL. You can also include @rev in the URL, e.g., @275 to check out revision 275.

Requirement files are mostly flat. Maybe MyApp requires Framework, and Framework requires Library. I encourage you to still list all these in a single requirement file; it is the nature of Python programs that there are implicit bindings directly between MyApp and Library. For instance, Framework might expose one of Library’s objects, and so if Library is updated it might directly break MyApp. If that happens you can update the requirements file to force an earlier version of Library, and you can do that without having to re-release MyApp at all.

Read the requirements file format to learn about other features.

Freezing Requirements

So you have a working set of packages, and you want to be able to install them elsewhere. Requirements files let you install exact versions, but it won’t tell you what all the exact versions are.

To create a new requirements file from a known working environment, use:

$ pip freeze > stable-req.txt

This will write a listing of all installed libraries to stable-req.txt with exact versions for every library. You may want to edit the file down after generating (e.g., to eliminate unnecessary libraries), but it’ll give you a stable starting point for constructing your requirements file.

You can also give it an existing requirements file, and it will use that as a sort of template for the new file. So if you do:

$ pip freeze -r devel-req.txt > stable-req.txt

it will keep the packages listed in devel-req.txt in order and preserve comments.


Another way to distribute a set of libraries is a bundle format (specific to pip). This format is not stable at this time (there simply hasn’t been any feedback, nor a great deal of thought). A bundle file contains all the source for your package, and you can have pip install them all together. Once you have the bundle file further network access won’t be necessary. To build a bundle file, do:

$ pip bundle MyApp.pybundle MyApp

(Using a requirements file would be wise.) Then someone else can get the file MyApp.pybundle and run:

$ pip install MyApp.pybundle

This is not a binary format. This only packages source. If you have binary packages, then the person who installs the files will have to have a compiler, any necessary headers installed, etc. Binary packages are hard, this is relatively easy.

Using pip with virtualenv

pip is most nutritious when used with virtualenv. One of the reasons pip doesn’t install “multi-version” eggs is that virtualenv removes much of the need for it. Because pip is installed by virtualenv, just use path/to/my/environment/bin/pip to install things into that specific environment.

To tell pip to only run if there is a virtualenv currently activated, and to bail if not, use:


To tell pip to automatically use the currently active virtualenv:


Providing an environment with -E will be ignored.

Using pip with virtualenvwrapper

If you are using virtualenvwrapper, you might want pip to automatically create its virtualenvs in your $WORKON_HOME.

You can tell pip to do so by defining PIP_VIRTUALENV_BASE in your environment and setting it to the same value as that of $WORKON_HOME.

Do so by adding the line:


in your .bashrc under the line starting with export WORKON_HOME.

Using pip with buildout

If you are using zc.buildout you should look at gp.recipe.pip as an option to use pip and virtualenv in your buildouts.

Command line completion

pip comes with support for command line completion in bash and zsh and allows you tab complete commands and options. To enable it you simply need copy the required shell script to the your shell startup file (e.g. .profile or .zprofile) by running the special completion command, e.g. for bash:

$ pip completion --bash >> ~/.profile

And for zsh:

$ pip completion --zsh >> ~/.zprofile

Alternatively, you can use the result of the completion command directly with the eval function of you shell, e.g. by adding:

eval "`pip completion --bash`"

to your startup file.

Searching for packages

pip can search the Python Package Index (PyPI) for packages using the pip search command. To search, run:

$ pip search "query"

The query will be used to search the names and summaries of all packages indexed.

pip searches http://pypi.python.org/pypi by default but alternative indexes can be searched by using the --index flag.

Mirror support

The PyPI mirroring infrastructure as described in PEP 381 can be used by passing the --use-mirrors option to the install command. Alternatively, you can use the other ways to configure pip, e.g.:

$ export PIP_USE_MIRRORS=true

If enabled, pip will automatically query the DNS entry of the mirror index URL to find the list of mirrors to use. In case you want to override this list, please use the --mirrors option of the install command, or add to your pip configuration file:

use-mirrors = true
mirrors =